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Abstract

Defining the correlates of immune protection conferred by SIVΔnef, the most effective vac-

cine against SIV challenge, could enable the design of a protective vaccine against HIV

infection. Here we provide a comprehensive assessment of immune responses that protect

against SIV infection through detailed analyses of cellular and humoral immune responses

in the blood and tissues of rhesus macaques vaccinated with SIVΔnef and then vaginally

challenged with wild-type SIV. Despite the presence of robust cellular immune responses,

animals at 5 weeks after vaccination displayed only transient viral suppression of challenge

virus, whereas all macaques challenged at weeks 20 and 40 post-SIVΔnef vaccination were

protected, as defined by either apparent sterile protection or significant suppression of vire-

mia in infected animals. Multiple parameters of CD8 T cell function temporally correlated

with maturation of protection, including polyfunctionality, phenotypic differentiation, and

redistribution to gut and lymphoid tissues. Importantly, we also demonstrate the induction of

a tissue-resident memory population of SIV-specific CD8 T cells in the vaginal mucosa,

which was dependent on ongoing low-level antigenic stimulation. Moreover, we show that

vaginal and serum antibody titers inversely correlated with post-challenge peak viral load,

and we correlate the accumulation and affinity maturation of the antibody response to the
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duration of the vaccination period as well as to the SIVΔnef antigenic load. In conclusion,

maturation of SIVΔnef-induced CD8 T cell and antibody responses, both propelled by viral

persistence in the gut mucosa and secondary lymphoid tissues, results in protective immune

responses that are able to interrupt viral transmission at mucosal portals of entry as well as

potential sites of viral dissemination.

Author Summary

Annually, more than two million people worldwide are infected with HIV, the virus that

causes AIDS. Rhesus macaques can be infected with SIV, a close relative and ancestor

of HIV, resulting in simian AIDS, recapitulating key aspects of human HIV infection.

SIVΔnef, a live attenuated form of SIV, protects rhesus macaques from subsequent chal-

lenge with pathogenic SIV and is widely viewed as the most effective SIV vaccine. Here we

demonstrate that SIVΔnef persistence during the vaccination period drives both cell-

mediated and humoral immune response maturation. During the vaccination period,

cell-mediated immune responses elicited by SIVΔnef target more conserved regions of the

virus rendering immune escape more difficult. Furthermore, the localization of the cell-

mediated immune responses is shifted over time from peripheral blood to sites of viral

production that are rich in uninfected SIV target cells, thereby positioning cell-mediated

immune responses where they are most needed after wild-type SIV challenge. Similarly,

SIVΔnef persistence during the vaccination period also leads to the accumulation and

maturation of the humoral immune response. Our findings highlight the unique capacity

of persistent vaccines to elicit durable and effective immune responses against wild-type

SIV challenge.

Introduction

Despite the considerable resources committed to developing an effective HIV vaccine over the

past three decades, this objective remains elusive. Recent failures of HIV vaccine trials to dem-

onstrate protection against infection [1, 2] and the only marginal apparent efficacy demon-

strated in another, in which the observed limited protection was associated with unanticipated

immune correlates [3], have refocused the field on comprehensive efforts to identify the funda-

mental determinants of a protective vaccine-induced immune response. Although few models

of spontaneous lentiviral control exist, long-term nonprogressors and live attenuated SIV

(LASIV) vaccinated animals have both proved to be highly illuminating models regarding the

requisite immune correlates of viral control. The most effective lentiviral vaccine to date,

SIVΔnef, has demonstrated durable protection against both systemic [4, 5] and mucosal chal-

lenge routes [6–8], and against heterologous challenge virus [7, 8]. However, safety issues iden-

tified first in SIVΔnef infection in infant macaques [9–11], and subsequently in some adults

[10], preclude attenuated lentivirus vaccination as a viable vaccine strategy for HIV. Nonethe-

less, studies to identify correlates of protection in this premier model of successful vaccine-

induced protection against lentiviral challenge could certainly shed light on critical attributes

of a vaccine to protect against HIV.

A hallmark of live attenuated SIV vaccines, including SIVΔnef, is that protection against

wild-type SIV pathogenic challenge typically increases with time, plateauing at 15 to 20 weeks

post vaccination [5, 12, 13]. However, the immune mechanisms that underlie this protection,
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and its maturation, have been hotly debated. SIVΔnef vaccination generates strong antibody

responses [14, 15] and depletion of CD8 T cells does not abrogate protection induced by

SIVΔ3 (which contains deletions in nef, vpr and the U3 region) in Mamu-A�01- macaques

[16], implicating antibody responses as a potential mechanism of protection. Furthermore,

recent studies of anti-Env antibody responses have described SIV-specific antibody-dependent

cell-mediated cytotoxicity (ADCC) [15, 17] and antibody responses to trimeric gp41 concen-

trated by the neonatal Fc receptor (FcRn) in the vaginal and cervical epithelium [17] as tempo-

ral and anatomic correlates of the maturation of protection in SIVΔnef-vaccinated animals.

Similarly, SIV-specific CD4 and CD8 T cell responses have also been implicated in

SIVΔnef-induced protection [7, 8, 18–20]. Fukazawa and colleagues have correlated the

magnitude of the T cell response in lymph nodes during live attenuated SIV vaccination,

which in turn correlated with persistent residual replication of the vaccine virus in this site,

with protection against wild-type challenge [19]. We have since shown that increased anentro-

pic specificity, i.e. CD8 T cell responses targeting highly conserved epitopes, correlates with

maturation of protection during SIVΔnef vaccination [20]. Most recently, we have demon-

strated that low-level persistent SIVΔnef stimulation generates a unique signature of expres-

sion of transcription factors in SIV-specific CD8 T cells [21]. Finally, studies using a related

model involving immunization with an attenuated SHIV vaccine have correlated protection

against wild-type challenge with CD8 T cell responses in the female reproductive tract [22].

In this study we sought to delineate the temporal immune correlates of protection associ-

ated with maturation of immunity induced by SIVΔnef vaccination by employing a compre-

hensive approach involving both longitudinal studies and cross-sectional, intensive tissue

sampling studies. We conducted two large vaccine trials using identical viral stocks and the

same vaginal challenge route to determine the immune responses that correlate with protec-

tion against mucosal wild-type SIV challenge. The first study was a longitudinal vaccine trial

designed to ascertain the temporal kinetics of SIVΔnef-induced protection against wild-type

SIV vaginal challenge, and the second was a cross-sectional study to assay for immune

responses in mucosal and lymphoid tissues during the SIVΔnef vaccination period and after

SIV challenge. To resolve the contributions to protection of varying immune components, we

have quantitated SIVmac239Δnef and wild-type SIVmac251 viral loads using a discriminating

set of primers and simultaneously assayed for serum and vaginal antibody responses, deter-

mined the number of infecting viral variants after challenge using single genome analysis, and

analyzed the functionality, phenotype, specificity and tissue localization of CD8 T cell

responses. In these complementary vaccine studies, we demonstrate that the extent of SIVΔnef

replication in gut and lymphoid tissues drives CD8 T cell polyfunctionality, localization of

CD8 T cell responses to the tissues, antibody accumulation and affinity maturation, all of

which correlate with protection against wild-type SIVmac251 vaginal challenge.

Results

Protective immunity against vaginal challenge induced by SIVΔnef

vaccination is time dependent

To study the temporal immune correlates of SIVΔnef-induced protection against wild-type,

SIVmac251 challenge, we intravenously vaccinated 18 female macaques with SIVmac239Δnef.

MHC class I alleles associated with the control of SIV infection such as Mamu A�01 [23] and

Mamu B�17 [24] were evenly distributed among experimental groups (S1 Table). Given that

previous reports have documented increased protection during the first 20 weeks of SIVΔnef

vaccination following intravenous challenge [5, 12, 13], the animals were challenged intravag-

inally with SIVmac251 at 5, 20 and 40 weeks post-vaccination to establish the kinetics of
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protection for this route of infection. As a control group, a total of nine unvaccinated animals

were also intravaginally challenged with SIVmac251; three control animals were inoculated

simultaneously with each of the three experimental groups (Fig 1A).

To discern between the viral loads of the SIVmac239Δnef vaccine and the SIVmac251 chal-

lenge virus, discriminating primers were used for the real-time quantitative PCR assay.

Although all animals challenged 5 weeks after vaccination (Group 5 animals) were produc-

tively infected with wild-type SIV after intravaginal challenge with SIVmac251, nearly half of

the animals in week 20 and week 40 groups manifested apparent sterile protection against this

stringent high dose wild-type challenge, as assessed by plasma viremia (Fig 1B). Three of the

Fig 1. Timeline and outcome of the longitudinal vaccine study. (A) A schematic diagram demonstrating 18 animals

were vaccinated with SIVΔnef and intra-vaginally challenged at week 5, week 20 or week 40 with SIVmac251. Three

control animals were inoculated with SIVmac251 with each vaccination group. (B) Plasma viremia of control and

SIVΔnef-vaccinated animals after vaginal challenge with SIVmac251.

doi:10.1371/journal.ppat.1006104.g001
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animals vaccinated for 20 weeks and two of the animals vaccinated for 40 weeks with SIVΔnef

displayed apparent sterile protection based on the lack of detectable wild-type plasma viremia

after high-dose vaginal challenge. No such sterile protection was observed in the Group 5 ani-

mals, and all had measurable viral RNA as detected by RT-qPCR using SIVmac251-specific

primers. Of the nine control animals challenged with SIVmac251, eight were productively

infected.

Despite significantly lower peak viremia for infected animals in all vaccinated groups com-

pared to infected animals in the control group (p�0.0061) (Fig 2A), set-point plasma viral

load, measured at week 8 post-challenge, was similar for the eight infected, unvaccinated con-

trol animals and the six animals challenged at week 5 post-vaccination, at 1.3x106 and 2.6x105

RNA copies per ml of plasma, respectively (Fig 2A). In contrast, animals that were produc-

tively infected with SIVmac251 at week 20 or 40 post-vaccination had significantly lower set-

point wild-type viral loads than control animals. At week 8 post-challenge, SIVmac251-in-

fected animals in Groups 20 and 40 had an average set-point viremia of 5.9 X 103 and 8.9 X 102

RNA copies per ml of plasma, respectively (p = 0.024 and 0.002) (Fig 2A). Similarly, chronic

viral loads in infected Group 20 and 40 animals, measured at weeks 16 and 20, were signifi-

cantly lower compared to the Control Group (p�0.0083 and p�0.024, respectively) (Fig 2A).

A linear mixed model of post-challenge viral loads was used to determine the statistical sig-

nificance of SIVΔnef vaccination for the three experimental groups compared to the control

group, encompassing all animals whether infected or uninfected by the challenge virus. The

linear mixed model allows for comparison between different vaccination groups based on the

fixed effect of the duration of the vaccination period prior to pathogenic SIVmac251 challenge

(5, 20 or 40 weeks), while taking effects such as animal genetic background into account. Sta-

tistical analysis was performed for three phases over the course of viral infection: peak viremia,

viral set-point (weeks 5 to 12) and chronic infection (weeks 13 to 22). All three vaccinated

groups had significantly lower peak viremia than the unvaccinated controls (p� 0.013) (Fig

2B). However, the Group 5 animals demonstrated only a transient reduction in viremia com-

pared to unvaccinated animals and had comparable levels of viremia during the viral set-point

and chronic phases of infection (Fig 2B). In contrast, Group 20 and Group 40 animals, includ-

ing both partially and sterilely protected animals, had a significantly lower plasma viremia

than the control group during acute infection (p<0.008), viral set-point (p<0.0001) and

chronic infection (p�0.004). We defined protection from SIVmac251 challenge in a given

group as a greater than two-log viral load decrease in the first 20 weeks post-challenge com-

pared to the control group. The protection of Group 20 and 40 animals but not Group 5 vacci-

nees demonstrates that SIVΔnef-induced protection is temporally determined and that a

longer duration of vaccination correlates with protection from wild-type pathogenic mucosal

challenge.

SIVΔnef-vaccinated animals have fewer established viral variants

Having demonstrated disparate impact on plasma viremia among the different vaccination

groups, we next asked whether the different levels of protection were also manifest as sieving

effects on viral variants established in the disseminated systemic infection. Taking advantage

of the fact that our challenge virus, SIVmac251, is a quasispecies and not a clone, we used sin-

gle genome amplification [25] to estimate the number of transmitted viral variants that estab-

lished the initial disseminated infection manifested as plasma viremia. Plasma viral RNA was

reverse transcribed and the env gene in its entirety was amplified and sequenced for every ani-

mal. The sequences were then plotted as phylogenetic trees to determine the minimum num-

ber of viral variants that were transmitted and established in each animal.
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Fig 2. Lower viral loads in Group 20 and 40 SIVΔnef-vaccinated animals post-challenge. (A) Excluding animals

that were sterilely protected in Groups 20 and 40, SIVΔnef-vaccinated animals infected at weeks 20 and 40 displayed

sustained virological control during the first 20 weeks of challenge compared to control animals. In contrast, Group 5

animals only transiently suppressed SIV replication during peak viremia. Statistical tests conducted were all two-tailed

Mann-Whitney tests. (B) Linear mixed model of plasma viral load for each group including all animals, infected and

uninfected with wild-type challenge virus. The linear mixed model compared the viral loads of each vaccination group to

the control group at three phases during the course of viral infection (shaded in grey): peak viremia, viral set-point

(weeks 5 to 12), and chronic infection (weeks 13 to 22). Group 20 and 40 animals again demonstrate sustained

virological suppression during the first 20 weeks post-challenge.

doi:10.1371/journal.ppat.1006104.g002
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SIVΔnef vaccination had a significant effect on the number of SIVmac251 viral variants

established after challenge. Whereas unvaccinated control animals had an average of six viral

variants established after challenge, vaccinated animals with detectable wild-type SIV plasma

viremia had an average of three established variants, a significant narrowing of the genetic bot-

tleneck between unvaccinated and vaccinated animals (p = 0.0097) (Fig 3A). However,

although SIVΔnef vaccination reduced the number of established variants compared to unvac-

cinated controls, the number of established variants was not inversely correlated with time

from vaccination, and thus the reduction in established viral variants was not correlated with

the temporal maturation of protection. Rather, the average number of variants establishing

productive viral replication in infected animals was strikingly similar among the three vaccine

groups, an average of 3.3 viral variants for Group 5 animals, 3.3 viral variants for Group 20 ani-

mals and 3.5 viral variants for Group 40 animals (Fig 3B).

The number of founder variants in the vaccinated animals across all groups did inversely

correlate with the time to peak viremia (p<0.0001) (Fig 3C). This result, and the significant

reduction in peak viremia even at 5 weeks, is consistent with protective mechanisms in vacci-

nated animals with some immediate impact on constraining systemic infection (and thus

delaying peak viremia) that, nonetheless, require maturation for sustained effects on estab-

lished systemic infection seen in set-point reductions at 20 and 40 weeks.

SIV-specific antibody responses increase during the vaccination period

SIVΔnef induced significant IgG antibody responses in vaccinated animals as early as week 5

after vaccination. Serum IgG binding antibodies against Env and Gag-Pol rose quickly in the

first 5 weeks after vaccination and continued to rise, albeit gradually, into week 40 (Fig 4A).

Similarly, vaginal IgG antibody responses to Env and Gag-Pol rose precipitously in the first 5

weeks after vaccination and continued a slow increase into week 40 (Fig 4B). In both plasma

and vaginal secretions, the SIV-specific antibody response was dominated by IgG responses,

which were 2–3 logs higher than the SIV-specific IgA responses. The avidity of Env-specific

serum IgG and IgA responses (Fig 4C), as well as the concentrations of anti-Env serum IgG

responses (S1A and S1B Fig), were lower in Mamu-A�01+ animals compared to animals that

did not express Mamu-A�01, probably due to the overall lower viral load levels achieved in

Mamu-A�01+ animals during the vaccination period (S1C Fig).

Fig 3. SIVΔnef vaccination reduces transmitted viral variants. (A) Vaccinated animals had significantly fewer viral

variants than unvaccinated controls (p = 0.0097; two-tailed unpaired t-test) after inoculation with SIVmac251. (B) The

number of transmitted viral variants did not differ between the unprotected Group 5 animals and the protected Group 20 and

40 animals. (C) In vaccinated animals, the time-to-peak viremia inversely correlated with the number of transmitted viral

variants (p<0.0001, r = -0.8834; two-tailed Pearson correlation).

doi:10.1371/journal.ppat.1006104.g003
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In addition to binding antibodies and avidity, we also analyzed the ability of serum antibod-

ies to inhibit infection of CEM cells by a neutralization-sensitive, T cell line adapted (TCLA)

stock of SIVmac251. The titers of TCLA neutralizing antibodies in the serum of SIVΔnef-vac-

cinated animals doubled between weeks 5 and 20 and quadrupled between weeks 5 and 40

post-vaccination (Fig 4D). Serum TCLA neutralizing antibody titers also directly correlated

with the cumulative antigenic load, calculated as the area under curve (AUC) of the plasma

viral load (S2 Fig).

The TCLA neutralizing antibody titers in vaccinated macaques at time of challenge

inversely correlated with peak SIVmac251 viremia after vaginal challenge (p = 0.011) (Fig 5A).

While TCLA neutralizing antibody titers were significantly different between unprotected ani-

mals and those with apparent sterile protection, neutralizing antibody titers on the day of chal-

lenge were not significantly different between unprotected animals and partially protected

animals, nor were they significantly different between partially protected animals and sterilely

protected animals (Fig 5B). However, there was a trend toward higher TCLA neutralizing anti-

body titers between unprotected and partially protected animals and likewise between partially

and sterilely protected animals.

Fig 4. Prechallenge antibody responses in SIVΔnef-vaccinated animals. Concentrations of IgG and IgA binding

antibodies to gp130 Env and Gag-Pol antigens in (A) serum and (B) vaginal secretions of all vaccinated animals were

measured using ELISA. For vaginal secretions, the specific activity was calculated by dividing the IgG or IgA antibody

concentration by the total IgG or IgA concentration in each sample. Shown are geometric means and SEM. The dashed

line denotes the cut-off for significance (average specific activity + 3SD for negative controls). (C) The average avidity of

Env-specific IgG and IgA antibodies in serum was determined using a NaSCN displacement ELISA. Error bars represent

SEM. Mamu-A*01+ animals were found to have anti-Env IgG and IgA antibodies with significantly lower avidity than that in

Mamu-A*01- animals. (D) A tissue culture lab adapted (TCLA) SIVmac251 was used to measure 50% neutralizing titers in

serum of Grp 5, Grp 20 and Grp 40 animals on weeks 5, 20 and 40, respectively, after SIVΔnef vaccination. No significant

differences were observed between the groups.

doi:10.1371/journal.ppat.1006104.g004
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Fig 5. Humoral correlates of immune protection in SIVΔnef vaccinated animals. (A) TCLA SIVmac251

neutralizing antibody titers in serum on the day of challenge inversely correlated with peak post-challenge SIVmac251

viral loads. (B) TCLA neutralizing antibody titers in sterilely protected (though not partially protected) Grp 20/40

animals were significantly higher than those in unprotected Grp 5 animals. (C) Levels of anti-Env IgG binding

antibodies in serum on the day of challenge and (D) anti-Env IgG specific activity in vaginal secretions collected 2

weeks before challenge, were inversely associated with peak post-challenge viremia. (E, F) The avidity of Env-specific

serum IgG and IgA on the day of challenge was also significantly greater in sterilely protected animals. (G, H) Avidity of

anti-Env serum antibodies in SIVΔnef vaccinated animals inversely correlated with peak post-challenge viremia. Two-

tailed Spearman tests were used for all correlations and two-tailed Mann-Whitney tests were used for all comparisons

between groups. Exclusion of the sterilely protected animals from the analysis presented in panel 5D also
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Although levels of anti-Env IgA binding antibodies in serum and vaginal secretions did not

correlate with peak viral load post-challenge (S3 Fig), post-challenge peak SIVmac251 viremia

was inversely correlated to serum anti-Env IgG concentrations (p = 0.017) (Fig 5C) and dem-

onstrated an even stronger inverse relationship to anti-Env IgG specific activity in vaginal

secretions (p = 0.0027) (Fig 5D). The avidity of anti-Env serum antibodies on the day of chal-

lenge was also significantly greater in sterilely protected animals (Fig 5E & 5F), and it inversely

correlated with peak viremia (Fig 5G & 5H), indicating that higher quality antibody responses

were generated in both partially and sterilely protected animals. The inverse correlation

between peak viremia and multiple parameters of SIV-specific antibody titers in both serum

and the vaginal mucosa strongly support a role for humoral responses in SIVΔnef-induced

protection.

SIV-specific T cell responses increase in functionality

Along with robust binding and TCLA neutralizing antibody responses, SIVΔnef also induced

robust SIV-specific CD4 and CD8 T cell responses, as measured in blood. Following vaccina-

tion with SIVΔnef, plasma viremia peaked at week 2 post-inoculation and the total CD8 T cell

response peaked at week 5 as measured by the IFN-γ ELISpot assay and declined following

control of viremia (Fig 6A). However, although total SIV-specific CD8 T cell responses

decreased between weeks 5 and 20, responses against the highly conserved Gag protein were

maintained over time (Fig 6A), highlighting the importance of antigen specificity for CD8 T

cell response persistence. Gag-specific CD8 T cell responses were also shown to be maintained

between weeks 5 and weeks 20 and 40 as measured by IFN-γ and TNF-α expression using

intracellular cytokine staining (ICS) assays, in addition to a significant increase in IL-2 produc-

tion (p = 0.016) (Fig 6C). In contrast, IFN-γ-, TNF-α- and IL-2-producing Gag-specific CD4 T

cell responses increased significantly between weeks 5 and 20 (p�0.0067) (Fig 6B), indicating

a significant upsurge in the functionality and magnitude of Gag-specific CD4 T cell responses

at week 20. Similar trends of increased cytokine production by Gag-specific CD4 T cells

between weeks 5 and 40 were also observed but were not statistically significant due to the

small number of animals at week 40.

To ascertain the polyfunctionality of the T cell response at weeks 5 and 20, we stimulated

peripheral blood mononuclear cells (PBMC) with overlapping Gag peptides and analyzed

IFN-γ, TNF-α and IL-2 production. Using Boolean gating, we evaluated the functionality of

Gag-specific CD4 T cells by determining the percentage that concurrently expressed all three

cytokines or two of the three cytokines at weeks 5, 20 and 40 post-vaccination. The percentage

of Gag-specific CD4 T cells expressing all three cytokines measured increased significantly

between weeks 5 and 20 from 1.5 to 10 and between weeks 5 and 40 from 1.5 to 8.3 and, like-

wise, the percentage of Gag-specific CD4 T cells expressing 2 of the 3 cytokines assayed rose

significantly from 12% at week 5 to 31% at week 20 and to 29% at week 40 (p�0.043) (Fig 6D).

Increased functionality in SIV-specific responses was also observed in CD8 T cells where the

tri-functional Gag-specific CD8 T cells, coordinately expressing TNF-α, IFN-γ and IL-2,

increased from 0.6% to 3.4% of total responses between weeks 5 and 20 (p = 0.023) and

remained high at 3.8% up to week 40 (p = 0.0053). Similarly, Gag-specific CD8 T cell responses

expressing 2 of the 3 cytokines comprised 11% of the response at week 5 and rose to 29% and

31% at weeks 20 (p = 0.0072) and 40 (p = 0.0020), respectively (Fig 6E).

demonstrated a significant correlation between antibody titer and viral load (p = 0.049), while non-significant trends

were noted for panels 5A, C, G and H when sterilely protected animals were excluded (p values = 0.076, 0.35, 0.36

and 0.074, respectively).

doi:10.1371/journal.ppat.1006104.g005
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Fig 6. Functionality of SIV-specific T cell responses increased during SIVΔnef vaccination. (A) While the total SIV-specific T cell

response as measured by IFN-γ ELISpot decreased during the first 20 weeks of SIVΔnef vaccination, the Gag-specific T cell response

Persistent SIVΔnef Replication Induces Immunity against SIV Challenge
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Thus, in contrast to the declining magnitude of the total SIV-specific CD8 T cell response

as detected by ELISpot assays to the entire SIV proteome, the magnitude of Gag-specific CD4

and CD8 T cell responses was maintained throughout the vaccination period. In addition,

both Gag-specific CD4 and CD8 T cell responses increased in functionality over the forty-

week SIVΔnef vaccination phase.

SIVΔnef replication maintains CM9-specific CD8 T cell response in gut

and lymphoid tissues

Given that the magnitude of Gag-specific CD8 T cell responses as measured by cytokine pro-

duction was maintained during the first 40 weeks of SIVΔnef vaccination, we sought to locate

SIV-specific CD8 T cell responses within the female reproductive tract, the route of challenge;

the gut mucosa, the anatomical site most enriched for activated CD4 memory T cells that are

the most permissive target for SIV; and the secondary lymphoid tissues, where antigen-pro-

cessing and presentation are most likely to occur after infection. In order to quantitate the

localization, the magnitude and the specificity of SIV-specific CD8 T cells in the tissues during

the SIVΔnef vaccination phase and the subsequent post-challenge phase, we conducted a fol-

low-up cross-sectional serial sacrifice study. In the follow-up study, a total of 26 animals were

vaccinated with SIVΔnef, of which 1 to 4 animals were sacrificed at days 4, 7, 11, 14, 35 and

140 post-vaccination. The remaining animals were challenged with SIVmac251 intravaginally

and 2 to 4 macaques were sacrificed at days 4, 5, 7, 11 and 14 post-challenge (Fig 7).

Having demonstrated that animals vaccinated for 5 weeks with SIVΔnef were not protected

compared to animals vaccinated for 20 or 40 weeks in the longitudinal study, we comprehen-

sively examined animals at weeks 5 and 20 post-vaccination to determine the tissue localiza-

tion of SIV-specific CD8 T cell responses. Tissues from secondary lymphoid tissues, including

was maintained over time. Error bars reflect SEM. (B) Gag-specific CD4 T cells at week 20 expressed significantly higher levels of IFN-

γ (p = 0.0067), IL-2 (p = 0.0049), and TNF-α (p = 0.0052) than Gag-specific CD4 T cells at week 5 (two-tailed paired t-test). (C) Gag-

specific CD8 T cells at weeks 20 and 40 expressed significantly higher levels of IL-2 than at week 5 (two-tailed paired t-test). (D)

Trifunctional Gag-specific CD4 T cell responses were significantly higher at week 20 (p = 0.0235) and week 40 (p = 0.0433) than at

week 5; dual-functional CD4 T cell responses were also significantly higher at week 20 (p = 0.0267) and week 40 (p = 0.0344) (two-

tailed Wilcoxon test). (E) Trifunctional Gag-specific CD8 T cell responses increased significantly between weeks 5 and 20 (p = 0.0234)

and between weeks 5 and 40 (p = 0.0053); dual-functional CD8 T cell responses also increased significantly from week 5 to week 20

(p = 0.0070) and week 40 (p = 0.0020) (two-tailed Wilcoxon test).

doi:10.1371/journal.ppat.1006104.g006

Fig 7. Schematic diagram of the cross-sectional serial sacrifice vaccine study. A total of 26 animals were

vaccinated with SIVΔnef: four were sacrificed during the first two weeks of infection, four were sacrificed at week 5,

and four sacrificed at week 20 (Challenge Day 0). The remaining 14 animals were challenged intravaginally with

SIVmac251 and serially sacrificed at the indicated time points during the first two weeks after challenge.

doi:10.1371/journal.ppat.1006104.g007
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lymph nodes and the spleen; the gut mucosa, including the jejunum, the ileum and the colon;

and the female reproductive tract, including the cervix and the vagina, were processed and

stained for CM9-MHC tetramer+ and SL8-MHC tetramer+ CD8 T cells. CM9 is a highly con-

served epitope within the Gag protein, while Tat SL8 is a highly variable epitope that escapes

CD8 T cell responses mounted against it frequently and rapidly [20, 26]. These two epitopes

on opposite extremes of the immune evasion spectrum were chosen to determine if epitope

entropy, a measure of an epitope’s mutational flexibility, plays a role in the maintenance of its

CD8 T cell response in the tissues.

Overall, the frequency of CM9-specific CD8 T cell responses was maintained between

weeks 5 and 20 in most tissues processed (Fig 8A). On the other hand, SL8-specific CD8 T cell

response frequencies declined in every tissue processed (Fig 8B), confirming that epitope

escape led to the waning of responding CD8 T cells in the tissues and that ongoing antigenic

stimulation is necessary to maintain SIV-specific T cells in both lymphoid and non-lymphoid

tissues. Looking at fold change of tetramer+ CD8 T cells at week 20 over week 5, SL8-specific

CD8 T cell responses ranged between 0.1 and 0.65 in all tissues, signifying a 35–90% decrease

between weeks 5 and 20, whereas CM9-specific CD8 T cell responses persisted at similar levels

throughout most sites, with the notable exception of peripheral blood, where CM9-specific

CD8 T cell responses experienced a similar drop to that of SL8-specific CD8 T cells (Fig 8C).

We also noted that the ileum, the jejunum, the colon and the mesenteric lymph nodes had

increased frequencies of CM9-specific CD8 T cells from week 5 to week 20 post-vaccination.

While CM9-specific CD8 T cell responses decreased significantly in peripheral blood

(p = 0.014), their frequencies were maintained in secondary lymphoid tissues (p = 0.51) and

the female genital tract (p = 0.81) and increased significantly in the gut mucosa (p = 0.001)

(Fig 8D). Notably, the frequency of CM9-specific CD8 T cells was significantly higher in the

female genital tract than it was in secondary lymphoid tissues at both week 5 (p = 0.0087) and

week 20 (p<0.0001). To determine if the maintenance of CM9-specific CD8 T cell responses

in secondary lymphoid tissues, the gut mucosa and the female genital tract was due to SIVΔnef

replication in these tissues, we measured the cell-associated SIV RNA in these tissues at week

20. As has been previously shown, SIVΔnef replication persisted at relatively high levels in sec-

ondary lymphoid tissues (Fig 8E). Interestingly, the jejunum and the colon had levels of cell-

associated viral RNA comparable to secondary lymphoid tissues. In contrast, peripheral tissues

like the female genital tract, the lungs, liver and the rectum had very low cell-associated viral

loads (Fig 8E).

The presence of high frequencies of SIV-specific CD8 T cell responses in the gut, approach-

ing 3% of total CD8 T cells for CM9-specific cells alone, highlighted the potential vaccination-

induced protection of this important immune compartment and site of massive CD4 T cell

depletion during wild-type SIV infection in unvaccinated animals. We phenotyped the CD4 T

cell population in the jejunum, colon and mesenteric lymph nodes, all sites previously demon-

strated to undergo massive depletion of CCR5+, central memory CD4 T cells during acute SIV

infection [27]. In SIVΔnef-vaccinated animals subsequently challenged with wild-type SIV-

mac251 at 20 weeks post-vaccination, the frequency of CCR5+ CD28+ CD95+ CD4+ T cells did

not decrease in the jejunum, the colon or the mesenteric lymph nodes between days 0 and 14

post-challenge (Fig 9). Nor was there a decrease of total memory CD4 T cells (CD95+ CD4+) in

these tissues (S4A Fig) during the first 2 weeks post-challenge. Finally, the number of memory

CD4 T cells as a percentage of CD3+ T cells in peripheral blood during the first two weeks was

not different between uninfected and infected animals with the post-challenge SIVmac251 virus

(S4B Fig), highlighting the prevention of CD4 T cell depletion in the gut after challenge even in

animals that are partially, but not sterilely, protected.
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Fig 8. SIV-specific CD8 T cell response localizes to the gut and secondary lymphoid tissues during SIVΔnef

vaccination. (A) CM9-specific CD8 T cells were maintained across tissues between weeks 5 and 20 post-SIVΔnef

vaccination. Arrows highlight three tissues (colon, mesenteric lymph nodes and jejunum) where an increase in

CM9-specific CD8 T cells is observed. (B) SL8-specific CD8 T cell responses wane in all tissues assayed. (C) The fold

change of tetramer+ CD8 T cells between weeks 5 and weeks 20 shows that CM9-specific CD8 T cells were maintained

or increased in every tissue except peripheral blood. *The fold change between weeks 5 and 20 for the ileum was based

on one animal at each time point. (D) CM9-specific CD8 T cells were maintained in secondary lymphoid tissues (SLT)

and the female genital tract (FGT), whereas they increased significantly in the gut mucosa (GM) (p = 0.0010) and

decreased significantly in peripheral blood (PBMC) (p = 0.0143) (two-tailed unpaired t-test). (E) Comprehensive tissue

and plasma viral quantitation reveals high levels of cell-associated viral RNA in secondary lymphoid tissues, the jejunum

and the colon at 20 weeks post SIVΔnef-vaccination.

doi:10.1371/journal.ppat.1006104.g008
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Tissue-resident SIV-specific CD8 T cell responses in the gut mucosa

and female genital tract

Having demonstrated that SIV-specific CD8 T cell responses were maintained in the tissues,

we phenotyped these responses using memory and functional markers over the 20-week vacci-

nation period. Secondary lymphoid tissues and female genital tract CM9-specific CD8 T cells

expressed higher levels of CD28 on the cell surface at week 20 than at week 5 (p = 0.0005,

p = 0.001), denoting a shift to a more quiescent memory phenotype at week 20 (Fig 10A).

Although CD28 expression levels in gut mucosa CM9-specific CD8 T cells were already high

at week 20, there was no significant increase in the levels of CD28 expression in gut mucosa

CM9-specific CD8 T cells between weeks 5 and 20, suggesting differences in the extent of anti-

genic stimulation in the different tissues (Fig 10A). In contrast, CCR7 expression levels in

CM9-specific CD8 T cells remained relatively constant across all tissues and peripheral blood

between weeks 5 and 20 (Fig 10B). Furthermore, in line with a shift from an effector memory

cell to a more quiescent memory CD8 T cell response from week 5 to week 20, intracellular

perforin levels in CM9-specific CD8 T cells decreased significantly between weeks 5 and 20

across all tissue compartments and peripheral blood (p<0.0001) (Fig 10C). Increased localiza-

tion of CM9-specific CD8 T cells from the periphery to the tissues between weeks 5 and 20

(Fig 8D) was correlated with significantly increased expression of CXCR3 in CM9-specific

CD8 T cells in all tissues and peripheral blood (p�0.0124) (Fig 10D).

To determine if the sustained levels of CM9-specific CD8 T cells in the tissues were due to

cellular proliferation, we assayed the intracellular expression of the proliferation marker Ki-67.

While the expression of Ki-67 fell significantly in CM9-specific CD8 T cells in peripheral

blood between weeks 5 and 20 (p = 0.0033), it declined less significantly in secondary lym-

phoid tissues (p = 0.0146) and did not decrease in the gut mucosa and the female genital tract

(Fig 10E). Comparing Ki-67 expression levels at week 20 for the escaped SL8-specific CD8 T

cell response and the CD8 T cell response specific to the highly conserved CM9, we observed

similar percentages of cells expressing Ki-67 in peripheral blood. However, Ki-67 expression

was significantly higher in CM9-specific CD8 T cells than in SL8-specific CD8 T cells in the

secondary lymphoid tissue (p = 0.0058) and the gut mucosa (p = 0.02) (Fig 10F). The higher

Fig 9. No depletion of CCR5+ central memory CD4 T cells in SIVΔnef-vaccinated animals after

SIVmac251 challenge. SIVΔnef-vaccinated animals challenged with SIVmac251 at week 20 displayed no

depletion of CCR5+ cells within the central memory CD4 T cell compartment in any gut tissues surveyed,

including the jejunum, colon and mesenteric lymph nodes.

doi:10.1371/journal.ppat.1006104.g009
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Fig 10. Maturation of CD8 T cell response to transitional memory phenotype during SIVΔnef vaccination. (A)

Increased expression of CD28 in CM9-specific CD8 T cells in SLT (p = 0.0018) and FGT (p = 0.0010) between 5 and 20

weeks post-SIVΔnef vaccination. (B) No change in CCR expression between weeks 5 and 20 post-vaccination with

SIVΔnef. (C) Significant decrease in perforin levels in CM9-specific CD8 T cells across all tissues (p<0.0001). (D)

Increased expression of CXCR3 across all tissues between weeks 5 and 20 post-vaccination with SIVΔnef (p�0.0367).

(E) Significant decrease in Ki-67 levels in peripheral blood (p = 0.0156) and SLT (p = 0.0308) but no decrease in GM and

FGT. (F) Ki-67 expression levels were higher in CM9-specific CD8 T cells than in SL8-specific CD8 T ells in SLT

(p = 0.0058) and in GM (p = 0.0203) but not in peripheral blood or FGT. All statistical analyses were conducted using

two-tailed unpaired t-tests.

doi:10.1371/journal.ppat.1006104.g010
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level of Ki-67 in tissue-resident CM9-specific CD8 T cells, but not CD8 T cells targeting SL8,

likely reflects continued viral replication in the gut mucosa and the secondary lymphoid tissues

that may explain both the maintenance of CM9-specific CD8 T cells.

A number of recent reports have identified a distinct population of antigen-specific tissue

resident CD8 T memory cells that do not recirculate and provide long-lived immunity against

a variety of pathogens [28–30]. Although definitive phenotypic markers for tissue-resident

memory have not yet been identified, expression of CD69 has been consistently observed in

multiple studies [31, 32]. Upregulation of the activation marker CD69 has been demonstrated

to block tissue egress of tissue-resident memory CD8 T cells by interfering with sphingosine-

1-phosphate receptor (S1PR1) [33], and tissue-resident memory CD8 T cells express high lev-

els of CD69 in the absence of recent activation [34–36]. To determine if SIV-specific CD8

T cells in nonlymphoid tissues displayed characteristics of stable populations of CD8 TRM,

we phenotyped CM9- and SL8-specific CD8 T cells for CD69 expression. By week 20 after

SIVΔnef vaccination, almost all CM9- and SL8-specific CD8 T cells in the jejunum, the colon,

the ileum and the vagina upregulated CD69, in contrast to CD8 T cell responses in secondary

lymphoid tissues and peripheral blood which were largely CD69- (Fig 11). Importantly, CD69

upregulation was not dependent on antigenic exposure, as the SL8 epitope is generally entirely

escaped by week 5 [20, 26] nor was it a sign of CD8 T cell proliferation, as SIV-specific CD8 T

cells in vaginal tissue demonstrated low Ki-67 expression at weeks 5 and 20 (Fig 10E, S5 Fig).

Although SL8-specific CD8 T cells in gut and vaginal tissues also upregulated CD69 expres-

sion, the overall magnitude of the SL8 response dropped significantly in these tissues between

weeks 5 and 20 (Fig 8C).

Discussion

The combined data from these two SIVΔnef vaccine studies offer a number of novel findings

that demonstrate the complex interplay of adaptive immune responses that ultimately result in

the protection of SIVΔnef-vaccinated animals from wild-type vaginal challenge. The longitudi-

nal vaccine study illustrates the protective effect of SIVΔnef vaccination against a minimally

heterologous, high dose vaginal challenge with SIVmac251. SIVΔnef vaccine-induced protec-

tion against vaginal challenge, whether sterile or partial, was temporally dependent, increasing

Fig 11. SIV-specific CD8 T cells express high levels of CD69 in gut and vaginal mucosae. Higher expression of CD69

in CM9-specific CD8 T cells and SL8-specific CD8 T cells in the vagina and the gut mucosa compared to secondary

lymphoid tissues after SIVΔnef vaccination. (PCD: post-challenge day).

doi:10.1371/journal.ppat.1006104.g011
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during the first 20 weeks of vaccination and sustained to 40 weeks post-vaccination. This time

course is in contrast to SIVΔnef-induced protection against homologous intravenous challenge

with SIVmac239, in which apparent sterile protection was observed as early as 5 weeks after

vaccination [37]. SIVΔnef vaccination created a genetic bottleneck by reducing the number of

established wild-type viral variants, which inversely correlated with a longer time-to-peak vire-

mia. Both neutralizing and binding antibody titers increased during the vaccination period,

and titers at time of challenge inversely correlated with peak viral load, while Gag-specific CD4

and CD8 T cell functionality increased in peripheral blood. The cross-sectional vaccine study

reveals the preservation of CM9-specific CD8 T cell responses in high viral-load tissues, pri-

marily in secondary lymphoid tissues and the gut mucosa, even as SL8-specific CD8 T cell

responses waned, highlighting the importance of ongoing antigenic stimulation to maintain

tissue-resident memory cells. Moreover, the persistent expression of Ki-67 in CM9-specific

CD8 T cells in the secondary lymphoid tissues and the gut mucosa correlated with the mainte-

nance of responses in these tissues, reinforcing the link between persistent local replication of

the vaccine virus, associated antigenic stimulation and persistence of immune responses. In

vaginal tissues, high CD69 expression coupled with low Ki-67 expression by SIV-specific CD8

T cells in the context of low viral replication strongly suggests the maintenance of a stable tis-

sue-resident memory CD8 T cell population. Taken together, these results document induc-

tion of a highly functional immune response by SIVΔnef, employing each arm of the adaptive

immune response and localizing to key sites of potential CD4 T cell infection.

Given the high efficiency of SIV infection of naïve controls following vaginal challenge

using the SIVmac251 stock and challenge conditions employed in this study, which is consis-

tent with previous studies with this stock [38, 39], the apparent sterile protection observed in

the Group 20 and 40 animals is likely to represent a vaccine-mediated effect reflecting the mat-

uration of protective cellular and humoral immune responses. Other potentially confounding

factors, such as the menstrual cycle of the animals, appear unlikely to affect our results.

Although there is evidence that the timing of the menstrual cycle may affect the susceptibility

of macaques to low-dose SIV or SHIV challenge [40, 41], this effect has not been demonstrated

in the setting of high dose SIV vaginal challenge. Given these considerations, as well as the fact

that our animals were likely to be cycling asynchronously, it appears improbable that the dif-

ferences in protection among the different experimental groups could be attributed to varia-

tions in the menstrual cycle of individual animals.

The effects of SIVΔnef vaccination on post-challenge virological outcome may be catego-

rized as acute virological suppression, sustained virological suppression, and apparent steriliz-

ing immunity. Acute virological suppression was characterized by a lower peak viral load,

fewer established viral variants and a prolonged time-to-peak viremia, but was not temporally

dependent. The reduction of viral variants was not sufficient to induce protection from chal-

lenge, since all groups of vaccinated animals had similar levels of established viral variants. By

significantly decreasing peak viremia, perhaps a result of the decreased established number of

viral variants, SIVΔnef limited the initial impact of wild-type SIV infection even at early time

points after vaccination.

At later time points, protection against wild-type SIV vaginal challenge, whether partial or

sterile, correlated with immune maturation of humoral and cellular immune responses. First,

neutralizing antibody titers against TCLA SIV at day of challenge inversely correlated with

peak wild-type SIV viral load. Second, in Mamu A�01+ animals the magnitude of the

CM9-specific CD8 T cell response was largely maintained across most tissues during the vacci-

nation period, even as SL8-specific responses declined to the limit of detection in all tissues

assayed. This shift in specificity of the CD8 T cell response corroborates our previous results

demonstrating increased anentropic specificity, characterized by the accumulation of CD8 T
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cell responses to highly conserved epitopes between weeks 5 and 20 post-SIVΔnef vaccination

[20]. Furthermore, the difference in the persistence of CM9- and SL8-specific CD8 T cell

responses can be attributed in part to increased proliferation of CM9-specific CD8 T cells.

These results reinforce the concept that ongoing viral replication of SIVΔnef maintains the

antigenic stimulation of CD8 T cell responses directed at conserved epitopes.

In addition to the shift in specificity refocusing the immune response on more conserved

epitopes during the vaccination period, the CD8 T cell response was redistributed among tissues

by week 20. During this time, the magnitude of CM9-specific CD8 T cells significantly increased

in the gut mucosa and was maintained in secondary lymphoid tissues and the female genital

tract, while CM9-specific CD8 T cell responses in peripheral blood significantly declined. At

week 20, Ki-67 expression was significantly higher in CM9-specific CD8 T cells than in SL8-spe-

cific CD8 T cells in the gut mucosa and in secondary lymphoid tissues, suggesting that the

observed viral replication in these tissues stimulated CM9-specific CD8 T cell proliferation.

Meanwhile, tissue-resident memory CD8 T cells, which expressed high levels of CD69 and low

levels of Ki-67, populated the vaginal tissues at week 5 and 20 post-SIVΔnef vaccination. Resid-

ual viral replication in gut and lymphoid tissues is likely to account for the transitional memory

phenotype of CM9-specific CD8 T cells compared to SL8-specific CD8 T cells.

Fukazawa and colleagues have previously reported that the magnitude of T cell responses in

secondary lymphoid tissues in animals vaccinated with different LASIV strains predicts pro-

tection from wild-type SIV challenge [19]. Our current work extends these findings to the gut

mucosa. Comprehensive SIVΔnef RNA quantitation in tissues demonstrated that the gut

mucosa, particularly the jejunum and colon, were important sites of SIVΔnef replication at 20

weeks after vaccination, producing comparable levels of viral RNA to secondary lymphoid tis-

sues. The same factors that contribute to increased SIV replication in lymph nodes, namely the

presence of B cell follicles, which contain easily infectable follicular CD4 T helper cells [19]

and represent an immuneprivileged site impeding entry of SIV-specific CD8 T cells [42], are

also found in Peyer’s patches in the lamina propia of the gut mucosa [43]. Sites of viral replica-

tion such as B cell follicles that are relatively protected from immune surveillance may be

responsible for the ongoing antigenic stimulation required for protection induced by SIVΔnef.

In addition to shifting the specificity and tissue localization of the CD8 T cell response, per-

sistent replication of SIVΔnef is likely to promote increased production and affinity matura-

tion of antiviral antibodies, resulting in higher antibody affinity and higher neutralizing

antibody titers. Antibody responses also directly correlated with SIVΔnef viral load within a

given vaccination group, indicating that antigenic load and viral persistence play a key role in

driving the induction and the affinity maturation of the antibody response.

Several observations indicate antibodies play an important role in preventing or suppress-

ing replication of wild-type challenge virus in SIVΔnef-vaccinated animals. SIVΔnef-vacci-

nated animals with sterile protection had higher avidity Env-specific antibodies in serum on

the day of challenge, and in all vaccinated animals, antibody avidity was inversely associated

with peak post-challenge viremia. Serum anti-Env IgG binding antibody levels and TCLA neu-

tralizing titers also demonstrated a strong inverse correlation with peak plasma viremia, con-

sistent with prior observations of SIV-specific ADCC activity in this cohort of SIVΔnef-

vaccinated animals [15]. Moreover, anti-Env binding antibody titers in the vaginal mucosa

showed an even stronger inverse correlation with peak viral load post-challenge, suggesting

that SIV-specific antibody responses inhibit viral transmission and spread in the female repro-

ductive tract. The importance of SIV-specific responses localized to the female reproductive

tract in mediating protection against vaginal challenge induced by SIVΔnef is also reinforced

by our observations of a temporal maturation of antibodies to trimeric gp41 that are concen-

trated by the neonatal Fc receptor (FcRn) in the vaginal mucosa and cervical epithelium prior
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to [17] and following challenge [44]. Our results, suggesting a role for antibody responses dur-

ing the early stages of wild-type SIV vaginal challenge, corroborate our previous findings [15]

that ADCC activity in SIVΔnef-vaccinated animals exhibited a trend towards a negative corre-

lation with post-challenge peak viral load. While our previous study did show a significant

relationship between ADCC and apparent sterile protection, we did not detect any neutraliz-

ing antibody responses against the difficult-to-neutralize SIVmac251 stock in SIVΔnef-vacci-

nated animals on the day of challenge. In the present study, however, neutralizing antibodies

against TCLA SIVmac251 did significantly correlate with early viral control post-SIV vaginal

challenge, in addition to being significantly higher in sterilely protected animals than unpro-

tected animals.

Collectively the results of our longitudinal and cross-sectional analysis of the maturation of

protection are consistent with mechanisms of immune control that operate at different stages

of infection. In the early stages of infection following wild-type SIV vaginal challenge, the

immediate effects of antibody responses and CD8 T cell responses are likely to account for the

reduction of viral variants and the delay in time-to-peak viremia. However, sterilizing immu-

nity or significant reduction in set point plasma viremia require an immunologically matured

response that impacts systemic infection. At subsequent stages when virus has disseminated to

the gut and secondary lymphoid tissues, control of systemic infection requires a functionally

mature CD8 T cell response focused on conserved epitopes. This pattern of immune protec-

tion induced by SIVΔnef differs significantly from that induced by recombinant CMV vectors,

which induce early control and subsequent clearance of SIV infection in about 50% of animals

but do not result in reduction in set-point viremia in vaccinated animals with established

infection [45, 46].

Studies on SIVΔnef, the most effective vaccine to date against lentiviral challenge, continue

to provide important insights as to how to design a successful HIV vaccine. SIVΔnef persistence

drives the response specificity to conserved epitopes, redistributes the CD8 T cell responses to

CD4-rich gut and lymphoid tissues, replenishes the SIV-specific resident memory CD8 T cell

population in vaginal tissues, and induces increased antibody production and affinity matura-

tion. Future studies on SIVΔnef will be required to tease out the relative contributions of CD8 T

cell responses and neutralizing antibodies to apparent sterilizing immunity and long-term viral

control. Taken together, these findings highlight the importance of developing clinically appli-

cable vaccine strategies to provide ongoing antigenic stimulation that induces the maturation

and localization of both humoral and cellular responses able to prevent lentivirus infection.

Materials and Methods

Ethics statement

The animals included in this study were all female Indian-origin rhesus macaques (Macaca
mulatta), housed in a biocontainment facility at the New England Primate Research Center

(NEPRC). MHC class I genotypes were determined by sequence-specific PCR [47]. These experi-

ments and procedures were approved by the Harvard Medical Area Institutional Animal Care

and Use Committee (the Harvard Medical Area Standing Committee on Animals), protocol

04383. The Harvard Medical School animal management program is accredited by the Associa-

tion for the Assessment and Accreditation of Laboratory Animal Care, International (AAALAC),

and meets National Institutes of Health standards as set forth in the 8th edition of the Guide for

the Care and Use of Laboratory Animals [48]. The institution also accepts as mandatory the PHS

Policy on Humane Care and Use of Laboratory Animals by Awardee Institutions and NIH Princi-

ples for the Utilization and Care of Vertebrate Animals Used in Testing, Research, and Training.
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There is on file with the Office of Laboratory Animal Welfare (OLAW) an approved Assurance of

Compliance (A3431-01).

All animals were housed indoors in an SOP-driven, AAALAC-accredited facility. Hus-

bandry and care met the guidance of the Animal Welfare Regulations, OLAW reporting and

the standards set forth in The Guide for the Care and Use of Laboratory Animals. All research

animals were enrolled in the NEPRC behavioral management program, including an IACUC-

approved plan for Environmental Enrichment for research primates. This program included

regular behavioral assessments, and provision of species appropriate manipulanda, and forag-

ing opportunities. This protocol had an IACUC-approved exemption from social housing

based on scientific justification. Primary enclosures consisted of stainless steel primate caging

provided by a commercial vendor. Animal body weights and cage dimensions were regularly

monitored. Overall dimensions of primary enclosures (floor area and height) met the specifi-

cations of The Guide for the Care and Use of Laboratory Animals, and the Animal Welfare

Regulations (AWR’s). Further, all primary enclosures were sanitized every 14 days at a mini-

mum, in compliance with AWRs. Secondary enclosures (room level) met specifications of The

Guide with respect to temperature, humidity, lighting and noise level. The animals were pro-

vided ad lib access to municipal source water, offered commercial monkey chow twice daily,

and offered fresh produce a minimum of three times weekly. Light cycle was controlled at 12/

12 hours daily. The animals were subject to twice daily documented observations by trained

animal care and veterinary staff, and enrolled in the facility’s environmental enrichment, and

preventative health care programs. Euthanasia took place at defined experimental endpoints

using protocols consistent with the American Veterinary Medical Association (AVMA) guide-

lines. Animals were first sedated with intramuscular ketamine hydrochloride at 20 mg/kg

body followed by sodium pentobarbital (�100 mg/kg) intravenously to achieve euthanasia.

SIVΔnef vaccination and SIVmac251 vaginal challenge

Animals were intravenously vaccinated with SIVmac239Δnef using either 5 ng or 25 ng of

SIVp27. Vaginal challenges were carried out using 1.0 ml of SIVmac251 (kindly provided by

Chris Miller, University of California-Davis) inoculated twice in a single day, with a 4 hour

interval between inoculations. This stock of SIVmac251 (SIVmac251-CM) contains approxi-

mately 2 × 109 viral RNA copies/ml and approximately 5 × 104 50% tissue culture infectious

dose 50% (TCID50)/ml [49]. This vaginal challenge regimen and stock has previously resulted

in highly efficient infection of naïve controls [38, 39]. At the time of vaginal challenge, animals

were singly housed and assumed to be cycling asynchronously. Due to the requirement of per-

forming vaginal challenges at defined times after SIVΔnef vaccination, it was not possible to

perform vaginal challenges in relation to the menstrual cycle of individual animals.

Quantitative viral RNA analysis

For quantitation of plasma viral loads in SIVΔnef-infected animals, highly specific, real-time

RT-PCR assays were performed as described previously [50]. The assay specific for SIV-

mac239Δnef was developed by designing a reverse primer that recognizes the new sequence

generated by the deletion of the nef gene. Viral RNA loads for animals infected with SIV-

mac251 were determined through highly specific, real-time RT-PCR assays using a specific

reverse primer, which binds to the nef sequence in SIVmac251 but not SIVmac239Δnef. The

nominal threshold for these assays was 30 viral RNA copy equivalents/ml plasma. Tissue viral

load analysis was conducted as previously described [45].
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Single genome amplification

Single genome amplification to determine the number of transmitted viruses was conducted

as described previously [25, 51]. Briefly, RNA was isolated using viral RNA extraction kit (Qia-

gen) and cDNA synthesized using gene specific priming and super script III (Life Technology).

The cDNA was diluted in 96-well plates such that fewer than 29 PCRs yielded an amplification

product. First-round PCR was carried out in 1× High Fidelity platinum PCR buffer, 2 mM

MgSO4, 0.2 mM of each deoxynucleoside triphosphate, 0.2 μM of primers in vif and nef, and

0.025 U/μl platinum Taq High Fidelity polymerase (Invitrogen, Carlsbad, CA) in a 20-μl reac-

tion mixture. The PCR mixtures were set up in MicroAmp optical 96-well reaction plates

(Applied Biosystems, Foster City, CA) and sealed with ABI MicroAmp adhesive film. The fol-

lowing PCR conditions were used: 94˚C for 2 min followed by 35 cycles of 94˚C for 15 s, 55˚C

for 30 s, and 68˚C for 4 min, with a final extension of 68˚C for 10 min. Second-round PCR was

carried out using 1 μl of the first-round product and 0.2 μM of a primer set spanning the env
gene with the same PCR mixture as the first round. The PCR conditions included: 94˚C for 2

min followed by 45 cycles of 94˚C for 15 s, 55˚C for 30 s, and 68˚C for 4 min, with a final

extension at 68˚C for 10 min. The amplicons were sized on precast 1% agarose E-gel 96 (Invi-

trogen Life Technologies, Carlsbad, CA). All products derived from cDNA dilutions yielding

less than 30% PCR positivity were sequenced.

DNA sequencing

Viral env genes were sequenced by using BigDye Terminator chemistry and the protocols rec-

ommended by the manufacturer (Applied Biosystems, Foster City, CA). The sequences were

determined by using an ABI 3730xl genetic analyzer (Applied Biosystems, Foster City, CA)

and edited by using the Sequencher program, version 4.7 (Gene Codes, Ann Arbor, MI). Both

strands of DNA were sequenced. All chromatograms were carefully inspected for sites of

ambiguous sequence (double peaks), and those that contained one or more positions of mixed

bases were excluded from further analysis.

Measurement of SIV-specific antibody responses

ELISA was used to measure antibodies in serum and in vaginal secretions collected with

Weck-Cel sponges as previously described [52, 53]. All samples intended for IgA analysis were

first depleted of IgG using Protein G sepharose (GE Healthcare) as described [53]. Briefly,

microtiter plates were coated with either recombinant SIVmac239 gp130 envelope (Env) pro-

tein (ImmunoDiagnostics, Woburn, MA) or SIVmac239 viral lysate (Advanced Biotechnolo-

gies Inc, Columbia, MD). Because the lysate lacks detectable Env protein at the 1/400 coating

dilution used, antibodies against it are referred to as being Gag, Pol-specific. Serial dilutions of

samples and previously described macaque serum standards [52] were reacted overnight at

4˚C with coated/blocked plates. Plates were developed by treatment with biotinylated poly-

clonal goat anti-human IgG (SouthernBiotech, Birmingham, AL) or–monkey IgA (Open Bio-

systems, Huntsville, AL), followed by avidin peroxidase, and tetramethylbenzidine (Sigma).

Total IgA and IgG concentrations in secretions were measured by ELISA as previously

described [54]. Concentrations of SIV Env- or SIV Gag, Pol-specific IgA and IgG were divided

by the concentration of total IgA and IgG, respectively, to obtain the specific activity (ng IgA

or IgG antibody per μg total IgA or IgG).

The avidity of anti-Env antibodies in serum was measured using plates coated with gp130

and a NaSCN displacement ELISA modeled after that described by Vermont et al. [55]. The

avidity index was calculated by dividing the concentration of anti-gp140 IgG or IgA measured

in 1.5M NaSCN-treated wells by that in untreated wells on the same plate.
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Measurement of neutralizing antibodies

Antibody-mediated neutralization of T-cell-line-adapted SIVmac251 (TCLA SIV251) was

assessed in a CEMx174 cell killing assay as previously described [16]. Cell-free stocks of TCLA

SIV251 prepared in H9 cells were added in triplicate to multiple dilutions of test serum in

100 μl of RPMI 1640–12% fetal bovine serum containing 50 μg gentamicin in 96-well culture

plates. After incubation for 1 h at 37˚C, CEMx174 cells (5 × 104 cells in 100 μl) were added to

each well. Infection led to extensive syncytium formation and virus-induced cell killing in

approximately 4 to 6 days in the absence of antibodies. Neutralization was measured by stain-

ing viable cells with Finter’s neutral red in poly-l-lysine-coated plates. The percent protection

was determined by calculating the difference in absorption (A540) between test wells (cells

plus serum sample plus virus) and virus control wells (cells plus virus), dividing this result by

the difference in absorption between cell control wells (cells only) and virus control wells, and

multiplying the result by 100. Neutralization was measured at a time when virus-induced cell

killing in virus control wells was>70% but<100%. Neutralizing titers are given as the recipro-

cal dilutions required to protect 50% of cells from virus-induced killing.

Polychromatic flow cytometry analyses and tetramer staining

Surface staining was carried out by standard procedures for our laboratory as described [56].

Except where noted, all reagents were obtained from BD Biosciences (San Diego, CA) and

included monoclonal antibodies to the following molecules: CD3 (clone SP34-2, APC-Cy7

conjugate) CD4 (clone SK3, PerCP-Cy5.5 conjugate), CD8α (clone RPA-T8, Alexa700 conju-

gate) CD28 (clone CD28.2, PE-Texas Red conjugate, Beckman-Coulter, Fullerton, CA), CCR7

(clone 150503, Pacific Blue conjugate, custom) CXCR3 (clone 1C6, PE-Cy5 conjugate), Ki-67

(Clone B56, PE conjugate), CD127 (clone R34.34, PE conjugate, Beckman-Coulter), perforin

(clone Pf-344, FITC conjugate, Mabtech, Mariemont, OH). Intracellular staining for perforin

expression was performed using Caltag Fix & Perm (Invitrogen, Camarillo, CA) according to

the manufacturer’s suggested protocol. Enumeration of SIV-specific cells using PE- or APC-

conjugated pentamers to Mamu-A�01 Gag181-189CM9 and Tat28-35SL8 (Proimmune, Oxford,

UK) was performed as described previously [57]. All samples were analyzed using an LSR II

(BD Biosciences), and analyses were performed using FlowJo software (Tree Star Inc., Ash-

land, OR). Isotype-matched controls and/or fluorescence-minus-one (FMO) controls were

included in all assays [58].

Analysis of SIV-specific cytokine production

Intracellular cytokine staining (ICS) was performed using methods optimized for detection of

SIV-specific responses in rhesus macaques [59–61]. Briefly, thawed cryopreserved PBMC were

stimulated with SIVmac239 Gag peptides (2 μg/ml) for 12 hours at 37˚C in the presence of the

co-stimulatory antibodies anti-CD28 and anti-CD49d. GolgiPlug (5 μg/ml), GolgiStop (0.7 μg/ml)

and FITC-conjugated antibodies (5x concentration) to the lysosomal degranulation marker,

CD107a (clone H4A3), were also added for the duration of stimulation. Media-only and SEB-

stimulated cultures served as negative and positive controls, respectively. After culture, cells were

surface-stained with fluorochrome-conjugated antibodies to CD4 and CD8 as described above.

Cells were subsequently fixed and permeabilized using Caltag Fix and Perm, then incubated for

15 minutes at room temperature in the dark with APC-Cy7-conjugated anti-CD3, PE-conjugated

anti-IL-2 (clone MQ1-17H12), PE-Texas Red-conjugated anti-CD69 (clone TP1.55.3, Beckman-

Coulter), PE-Cy7-conjugated anti-IFN-γ (clone 4SB3), APC-conjugated anti-TNF-α (clone

MAb11). Samples were washed and fixed with 1% freshly prepared paraformaldehyde for at least

1 hour and then analyzed using an LSR II within 24 hours. Lymphocytes were gated based on
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forward-versus-side scatter characteristics, and the proportions of CD107a- and cytokine-express-

ing cells were determined by coexpression of CD69 on both CD3+CD4+ and CD3+CD8+ lympho-

cytes using FlowJo v8.8.6 software. All reported values are Gag-specific responses background

subtracted from media controls. Multifunctional analyses were performed using Spice v5.32 [62].

Statistical analysis

All statistical analyses were performed using GraphPad Prism software (GraphPad Software

v6.0b, Inc., La Jolla, CA, USA). Spearman’s rank correlation coefficients were used for assessing

all correlations. Nonparametric Wilcoxon and Mann–Whitney tests were used for statistical

analysis where the sample size was less than or equal to 6. Otherwise, parametric t tests were

conducted for quantitative outcomes that are approximately normally distributed; p values less

than 0.05 were assumed to be significant in all analyses.

Linear mixed effects models were used to evaluate longitudinal post-challenge viral loads of

the three experiment groups compared to the control group. The linear mixed model allows

for comparison between different vaccination groups based on the fixed effect of the vaccina-

tion duration (5, 20 or 40 weeks) as well as random effects (animal-specific effects), while

properly handling serial correlations among repeated viremia measures on the same experi-

mental animal. In this analysis, post-challenge period was classified into three phases over the

course of viral infection: peak viremia, viral set-point (weeks 5 to 12) and chronic infection

(weeks 13 to 22). Between-group differences in viremia in these three phases were evaluated.

Supporting Information

S1 Fig. Higher antibody response titers and viral load in SIVΔnef-vaccinated Mamu-A�01-
animals. (A, B) SIVΔnef-vaccinated Mamu-A�01- animals generated significantly higher levels

of serum anti-Env IgG (p = 0.0156) and IgA antibodies (p = 0.0313) than Mamu-A�01+ ani-

mals. (C) SIVΔnef-vaccinated Mamu-A�01- animals exhibited significantly higher plasma viral

loads than Mamu A�01- animals (p = 0.0005). Two-tailed Wilcoxon tests were used for all sta-

tistical analyses.

(EPS)

S2 Fig. SIVΔnef antigenic load directly correlates with serum TCLA neutralizing antibody

titers. SIVΔnef cumulative plasma viral load, calculated by analyzing the area under the curve

of plasma viremia from week four until the end of the vaccination period, directly correlates

with the concentration of TCLA neutralizing antibodies in serum (p = 0.0009). SIVΔnef cumu-

lative plasma viral load directly correlates with the concentration of TCLA neutralizing anti-

bodies in serum within group 20 (p = 0.031) and group 40 (p = 0.029) (two-tailed Spearman

correlation).

(EPS)

S3 Fig. Anti-Env IgA antibody titers do not correlate with post-challenge peak viremia. (A)

Anti-Env IgA antibody titers in the serum at day of challenge showed no relationship to peak

SIVmac251 viremia post-challenge. (B) Anti-Env IgA specific activity in the vaginal mucosa at

day of challenge did not correlate with peak SIVmac251 viremia post-challenge.

(EPS)

S4 Fig. No decrease in the CD4 T cell population of the gut mucosa after SIVmac251 chal-

lenge. (A) No decrease of the memory CD4 T cell population (CD95+CD4+) as a percentage

of total CD3+ T cells in the gut, including the jejunum, the colon and the mesenteric lymph

nodes. (B) No difference in the memory CD4 T cell population as a percentage of total CD3+

T cells in the gut of sterilely protected (uninfected) and partially protected (infected) animals
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at day 14 post-challenge with SIVmac251.

(EPS)

S5 Fig. Low proliferation of SL8-specific CD8 T cells at week 20 post-SIVΔnef vaccination.

SL8-specific CD8 T cells express significantly lower Ki-67 (p<0.0045) in peripheral blood, sec-

ondary lymphoid tissues and the gut mucosa at week 20 than at week 5 (two-tailed unpaired

t test).

(EPS)

S1 Table. MHC class I genotypes of longitudinal study animals. MHC class I alleles were

determined by sequence specific PCR [47].
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